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J. Phys. A: Math. Gen. 19 (1986) 161-181. Printed in Great Britain 

Absolute minima of the Higgs potential for the 75 of SU(5) 

C J Cummins and R C King 
Mathematics Department, University of Southampton, Southampton SO9 5NH, UK 

Received 24 May 1985 

Abstract. The problem of minimising the Higgs potential for the 75-dimensional representa- 
tion of SU(5) is considered. The most general form of the potential is established. In the 
absence of a cubic term it is shown that the possible symmetry breaking patterns include 
SU(3) x SU(2) x U(1), and a new counterexample to Michel’s conjecture is found. 

1. Introduction 

It is widely believed that a gauged field theory with broken symmetry describes the 
fundamental interactions of quarks and leptons. In models such as the standard 
SU(3) x SU(2) x U ( l )  or minimal SU(5) the symmetry breaking is produced via the 
Higgs mechanism. Quite generally the scalar Higgs field, cp, transforms as some 
representations vG (possibly reducible) of the gauge group G. The corresponding 
Higgs potential V(cp) is a fourth degree G invariant polynomial in the components of 
Q, which is required to be bounded from below and, in the broken symmetry phase, 
to have a maximum at the origin. In these circumstances the symmetry is broken by 
the Higgs field cp acquiring a non-zero vacuum expectation value (cp,)  equal to the 
value of cp which minimises V(cp). The symmetry is broken from G to the subgroup 
G,, of G which leaves (cp,) fixed. G,, is called the little group of (cp, ) ,  and we will 
call the Lie algebra of G,, the little algebra. The task of classifying all the possible 
symmetry breaking patterns in the case of Higgs fields transforming as an irreducible 
representation vG of a simple gauge group G was initiated by Li (1974) and extended 
by many others (Rbegg 1980, Kim 1982, Jetzer et al 1984, Cummins and King 1984). 

General approaches to the problem have been used to provide important theorems 
(Michel and Radicati 1971, Michel 1979, Abud and Sartori 1983) and a conjecture 
due to Michel (1979) would have considerably simplified the problem. Recently, 
however, counterexamples to this conjecture have been found amongst finite groups 
by Jaric (1983) and amongst continuous Lie groups by Abud et aJ (1984b). This latter 
counterexample involves the 75 of SU(5). 

A role for this representation has also been found within an SUC5) model in a 
study of fermion masses by Barbieri et al (1981a, b), (and an alternative SU(5) model 
based on the 75 has been proposed by Hubsch and Pallua (1984)). The group theoretical 
merits of the 75 have been pointed out by Tsao (1981). 

Unlike the situation for the 24 on restriction of the 75 from SU(5) to SU(3) x SU(2) x 
U(1) the only singlet of colour SU(3) is also an SU(2) singlet. This militates against 
any deviation from the mass formula M ,  = M ,  cos 0, associated with the subsequent 
breaking to SU(3) x U( 1). In addition any tendency to break from SU(5) to SU(4) x 
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U( 1) is suppressed. The first of these points favouring the 75 over the 24 is also made 
by Georgi (1982) in an SU(5) supersymmetric context. 

Thus there are two motivations, one physical and one mathematical, for studying 
the minimisation of the SU( 5 )  invariant potential V ( Q )  associated with the representa- 
tion 75. Rather than tackle the most general such potential of degree four it is convenient 
to impose an additional 2, invariance corresponding to the discrete transformation 
Q+ -Q in order to eliminate the cubic term from the potential (Abud et a1 1984a, 
Hubsch et a1 1984). When all the relationships between fourth-order invariants are 
used it is found that the minimisation reduces to a two-dimensional problem of the 
type described by Kim (1982). 

The form of the potential is given in § 2, while the justification for this form may 
be found in the two appendices. Following the methods of Kim (1982) the minimisation 
of the potential is undertaken in 0 3, where it is shown that the absolute minima may 
be found from a knowledge of the boundary of a closed, bounded, connected subset 
R of R2. The nature of R and its boundary, aR, is discussed in more detail in 0 4, 
leading to a description of possible symmetry breaking patterns including SU(3) x 
SU(2) x U( 1). For the most part we adhere to the notation of Abud et al (1984b), and 
we thank the authors for informing us of their work prior to publication. 

2. The Higgs potential 

The 75-dimensional representation of SU(5) may be realised by the action of SU(5) 
on the traceless mixed tensor Q$ satisfying the constraints 

( 2 . 1 ~ )  

(2.lb) 

(2.lc) 

where the indices takes the values 1,. . . ,5 .  Note that the representation is real. If we 
ignore for the moment any non-trivial relationships that may exist between invariants 
then it is not difficult to see that the most general form of the potential is (Abud et a1 
1984b) 

6 

V ( ~ ) = - / L ~ Q + V ~ C + V ~ C ’ +  C AjKj 
i = l  

where 

Q = B :  c = A:~Q$ C’ = D:~Q:; 

K~ = Q~ K ,  = A:jA:t K~ = B;B: (2.3) 

K~=-A: :D: ;  K, = - D$ D$ K6 = - D$ D$, 

and where 

A:: = Q $ Q ~  D 2  = Q :;Q 5; B;  = A;:. (2.4) 

However in the case of SU(5) it is shown in appendix 1 that the number of 
algebraically independent invariants of degrees 2, 3 and 4 are respectively 1, 1 and 3. 
Thus not all the terms in (2.2) are independent. In appendix 2 the following identities 
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(2.5 a, 6) 

K 2 -  K 3 + 5 K 4 + 2 K 5 = 0  0’- 8K3 + 2K2 + 8 K 4 =  0.  (2.5 c, d ) 

These are in agreement with the relationships of Abud et a1 (1984b), but include 
an additional fourth-order equation, which considerably simplifies the problem. The 
relationships ( 2 . 5 )  may be used to eliminate C’, K4,  K 5  and K 6  from ( 2 . 2 ) .  

The potential may be further simplified by imposing the discrete symmetry con- 
dition 

V(-cp) = V(cp> ( 2 . 6 )  

which eliminates the cubic terms at the expense of enlarging the symmetry group to 
SU( 5 )  x z,. 

Having done this the most general Higgs potential takes the simple form 

V(cp) = - p 2 Q  + AIK, + A2K2+ A 3  K3 
with 

K~ = ~2 = 1~:;cp:tl2 = 1 ~ 1 ~ .  
Note though that the full linear symmetry group of ( 2 . 7 )  is U ( 5 )  x Z,. 

3. Minimisation of the potential 

The minimisation of potentials of the form ( 2 . 7 )  has been described as follows in a 
very convenient geometrical manner by Kim (1982) .  

Introducing the homogeneous variables 

X = K 2 / Q 2  Y = K 3 /  Q’ ( 3 . 1 )  

V(cp) = - p 2 Q  + Q2(A1 + A2X + A 3  Y ) .  ( 3 . 2 )  

the potential ( 2 . 7 )  is given by 

As cp takes values in R75, V(cp) depends only on the three parameters Q, X and Y, 
with X and Y constrained by (3 .1)  to lie in some region R of R2. Since a change in 
Q corresponds to an overall scaling of cp, X and Y are independent of Q. Thus we 
may regard ( 3 . 1 )  as a map S74+R’ with image i2 and it follows that R is a closed, 
bounded, connected subset of R’. 

With p2>  0, V(cp) has the required maximum at cp = 0.  V(cp) will be bounded from 
below as lcpl+ CD provided that 

A i +  A 2 X + A 3  Y > 0. ( 3 . 3 )  
This must hold for all cp as Icp(+00 and hence for all X and Y in s1, thus putting 
constraints on A I ,  A 2  and A3.  (Note though that ( 3 . 3 )  may always be satisfied by 
choosing A l  sufficiently large.) 

Since for Q > 0 

aV/aQ = - p 2 + 2 Q ( A l  + h ’ X + A j Y )  ( 3 . 4 )  
and 

a2V/aQ2 = 2(A1 + A2X + A 3  Y )  > 0 ( 3 . 5 )  
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minima of V(Q) with respect to Q occur when 

and the corresponding value of the potential is 

Furthermore in the interior of R 

a v/ax = A ~ Q ’  and a v/a Y = A,Q’ 

so that it is clear that all the minima of V(Q), including the absolute minima, occur 
on the boundary an of R. The minimisation of V(Q) thus reduces to a study of an. 
Furthermore it is clear from (3.7) that in fact the minimisation of V(q) is equivalent 
to the minimisation of the Iinear function A I  + A2X + A ,  Y on 0. This makes it par- 
ticularly easy to find the ranges of parameters for which any particular solution is an 
absolute minimum. 

It is perhaps worth noting that although it is easy to find absolute minima by the 
above method, it is not in general possible to identify all local minima. 

4. The boundary of 0 

To investigate the region R, two constraints on X and Yare established. Consideration 
of the eigenvalues of an arbitrary n x n Hermitian matrix M shows that 

Tr(M2)/(Tr M ) ’ s  l / n .  (4.1) 

Equality holds if and only if 

M‘, = ma‘, i , j = l ,  . . . ,  n. 

However 
x=-=-- K 2  A:$A:i Tr(A2) 

Q2 [A”,]’ - (Tr A)’ 
and 

with A and B Hermitian 10 x 10 and 5 x 5 matrices respectively. Hence 

X 3 + j  

Y > +  
and 

(4.2) 

(4.3) 

(4.5a) 

(4.56) 

for all Q. Note that if X = &, then A:ja 6, which implies from (2.3) that BI: a 8;. 
So that if the first bound ( 4 . 5 ~ )  is saturated so is the second (4.56).  It is possible to 
write down a vector ‘po with this property which thus maps to a point on aR, namely 

‘Po = ao{ :: - :;+ ;:- :: - :’3 - ;:+ ;:+ ::+ :: - ::} (4.6) 
where cyo is a non-zero constant. The notation is that of Abud et al (1984b), whereby 
the other non-zero components of ‘p0 are generated using ( 2 . 1 ~ ) .  Thus cpl: = -cp:: = 
-9;: = cp:!  = a. etc (see appendix 3 for more details of this notation). 



Absolute minima of the Higgs potential 165 

It is in fact possible to saturate (4.5b) with (see table 3) 

(p( t ) = - ::+ :: + :: - :: - :: + :: + JZ[:3, + 3 + t [ :: + 3 + t[:: + 3 0 s  ts1. (4.7) 

This maps to the straight line Y=O.2, 0.1 s X d O . 2 2  and in view of (4.5b) this 

The end point Y = 0.2, X = 0.22 corresponds to 
must be part of dR. 

(p, = - ::+ ::+ :: - :: -;: +::+fi[::+ 3 (4.8) 

and there appear to be no points on the line Y = 0.2 with larger X values. Note that 
(p4 (see tables 1 and 2 )  also satisfies Y=O.2; it does not however have the same little 
algebra as (4.7). It follows that, at least at one point, vectors in two distinct strata 
map to the same point on dR. 

It does not seem possible to find any more useful algebraic constraints on X and 
Y for the form (4.5). We thus turn to group theoretical and numerical methods. 
Previous studies of similar problems (Kim 1984) suggest that maximal little groups 
with one invariant are frequently associated with cusp points on aR. The maximal 
little algebras of SU(5) together with their invariant vectors appear in tables 1 and 2 
and figure 1 (see also Abud et a1 1984b). Their images are shown in figure 2 and it 
does indeed appear, as will be shown, that these points lie on dR. Plotting random 
points strongly suggests that the line from (0.1, 0.2) to ( i , : ) ,  i.e. from (po to (p3 is a 
boundary, and it is possible to find a curve, cp(t) ,  that maps to this line (see table 3) 

Table 1. Description of vectors appearing in figure 2. 

Components of cp 

160 320 40 0.100 0.200 

1440 1344 72 0.278 0.259 

10080 3600 120 0.700 0.250 

96 144 24 0.167 0.250 

124320 141 120 840 0.176 0.200 

516 576 48 0.250 0.250 

114240 178704 912 0.138 0.215 

352 320 40 0.220 0.200 

32 16 8 0.500 0.250 
~ ~~ 

Note. cps, cp, and cp8 do not lie on do. The first two play an important role in Abud er a1 (1984a, b) and 
are included for reference. cps is included for completeness. 
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Table 2. Little algebras of vectors appearing in table 1.  

cp Little algebra Generators 

Qo 

QI 

(P2 

Q3 

Q4 

Q5 

(PS 

U(1)+ U( 1 )  + U(1) + U(1)" 

SU(3)+SU(2)+U(l )b  

SU(2) + SU(2) + U(1 ) b  

SU(2)b 

SU(2)+SU(2)+U(1)+U(1)"  

SU(2)+ U( 1 )  + U (  1 )  

SU(2) + SU(2) + U( 1 )  

a Non-maximal little algebra, maximal little group (Abud et al 1984a, b). 

Note. For convenience we have omitted a factor of  i for the symmetric generators. 
Maximal little group. 

It is also possible to find vectors which map to the whole of the line between (p2 

and cp,; these are also given in table 3 ,  and shown in figure 2. 
It is expected that not all of dS1 consists of straight lines, and so we turn to the 

problem of finding conditions for a curved section of the boundary to exist. 
Consider first two vectors xo and x1 E which map to distinct points q0, JI1 

on aR. Assume that there are no cusps on the section of the boundary between q0 
and ql, and that Jlo, t,bl are sufficiently close together so that the radius of curvature 
of aR does not change sign between t,bo and t,bl. Further consider a curve U :  [0, l ] +  
R7'\0 such that a(0) = ,yo and a(1) = xl. Then (3.1) defines a curve in R2 from Jlo to 

The functional 

(4 .10a)  

where 

L =  [ ( 3 * + ( ! 3 ] l ' *  ( 4 .  l o b )  
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Letter in 
figure 1 Algebra 

Number of 
invariants in 

Embedding in fundamental representation 
representation of SU(5) {i2, I*} 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 

1 
1 
1 
1 
3 
3 
2 
2 
9 
5 
4 

-4.0 

5 
5 
9 
7 
9 

15 
~ ~ ~~ ~~ 

Figure 1. Lattice of little algebras, excluding the U ( l )  + U(2) + . . . algebras. 

is the length of this curve. Thus if u( t )  maps to a boundary it must be an extremum 
of S( IT) .  Writing 

d X  d X d q ,  
d t  -ape d t  - X&, a = 1, . * . , 75  (4.11) 
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0.24 

Y 

0.22 - 

0.20 
0 ' 0.2 0.4 0.6 

X 

Curve/ point 
in figure 2 Comment 

Qi-CPs 
1 See table 3 
2 See table 3 
3 See table 3 
4 See table 3 

See description in tables 1 and 2 

Part of boundary generated by (4.18), see also table 5 
Part of boundary generated by (4.17a), see also table 4 
Part of boundary generated by (4.17c), see also table 4 
Part of boundary generated by (4.17b), see also table 4 
Part of boundary generated by (4.18), see also table 5 

1 1  

I 2  

Intersection of curves 7 and 8, curve 7 ceases to be a boundary 
Intersection of curves 8 and 9 

Figure 2. The region a. 

Table 3. Parametric form of straight lines in figure 2. 

Range Line in Generic little 
Parametric form of cp o f t  figure 2 algebra Generators 

O s r s l  4 U( 1) + U(1) + U(1) ; +; +: +: - 4 ( 3  
1 4 2  3 
1-49 2 - 3  
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and treating this as a variational problem yields the Euler-Lagrange equations 

P L [ X X U  + Pya] = [ X X U  + ?Ye] (4.12) 

which is of the form 
m( t ) X u  + n( t )  Y, = 0 (4.13) 

with m ( t )  and n ( t )  independent of a. Provided m ( t )  ZO and n ( t )  ZO, this implies 

either (i) Xu= Ya=O ( 4 . 1 4 ~ )  
or (ii) X , /  Ya = - n ( t ) / m ( t ) .  (4.14b) 

These conditions have been noted by Frautschi and Kim (1982). These equations 
are in general impossible to solve explicitly because of the large number of components 
involved. It is, however, possible to simplify (4.13) by noting that X and Y are both 
SU(5) invariant functions. Consequently (as pointed out by several authors (Michel 
and Radicati 1971, Abud and Sartori 1983, Jaric 1984)), at rp, both Xu and Y, are 
G, invariant vectors. Thus we may choose a subgroup H c  G and restrict (+ to lie in 
Fix(H), the space of H invariant vectors, and look for solutions of (4.13) restricted to 
Fix(H), since all other components of (4.13) must vanish. 

In general this problem will still be intractable unless H has only a small number 
of invariants. Fortunately, in this case, the curved part of aR does seem to correspond 
to such subgroups. 

A systematic procedure for investigating all relevant subgroups H is to calculate 
the lattice of conjugacy classes of little groups of SU(5) for the representation {i2; 1’). 
This is a somewhat difficult task and a simpler method (which reduces to linear algebra) 
is to find the lattice of conjugacy classes of little algebras of SU(5) in this representation. 
To each algebra we may then associate a subgroup H of SU(5) by matrix exponentiation. 
These subgroups are the identity components of the various little groups of SU(5). 
Now if H is a little group with identity component H it follows that H is a subgroup 
of fi and so Fix H c Fix H. Hence by examining the spaces Fix H we include the 
spaces Fix H. Care must be taken, however, since some information has been lost. 
In particular important little groups may have small little algebras (see the note in 
the conclusion concerning q0). 

Figure 1 displays the lattice of little algebras larger than U(l)k,  together with the 
embedding of the subgroup H in the fundamental representation of SU(5) and the 
dimension of Fix (H). For an explanation of the notation used in this figure, and the 
method of calculation of dim (Fix (H))  see appendix 3.  

We have examined the cases in figure 1 numerically by plotting random points in 
the X Y  plane generated by random points in each Fix(H). The results of this 
investigation are consistent with the conclusion that the curved part of aR is generated 
by the two spaces invariant under the algebras 

SU(2) + SU(2) + U( 1 )  (4.15) 

see table 4 and 
(1) + (1) x IO), + (0) X{l), + (0 )  x io } -4  

SU(2) + U (  1 )  + U (  1 )  { 1 { 11.1 + { 1 1 - 1 . 1  + {0}0,-4 (4.16) 

Using (4.13) and (4.14) for the embedding (4.15) yields the explicit solutions (in 
see table 5. 

the notation of table 4) 

A2 = O d B * d l  9 ( 4 . 1 7 ~ )  
69-225B2+(441+ 10710B2-27 135B4)1’2 

720 
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0cb25 2 9 - m  (4.17b) 

A=O O S B S ; .  (4 .17~)  

69-225B2-(441+ 10710B2-27 135B4)”’ A2 = 
720 108 

Table 4. SU(2)+SU(2)+U(l) .  

Embedding 

Branching 

Generators of 
little group 

Invariant vectors 
(equivalent to ql, q2, 9,) 

0 
K2 
K3 

Set Q = 8  
ICI2 = 1 -6A2 -3B2 

A(2(;:)+2(;:)- ::- ::-::-::) 
- ;: -23  + 25 + 3 5  45 

23 25 35-45) 
c::+ c:: 
8[6A2 +3B2 + IC12] 
32[ 18A4+ 3B4+ ICI4+2[ 12A2B2+ 12A21C(2+ B21C12] 
16[36A4+ SE4+ lCI4+ 2[ 10A2B2 +3A21 CI2+ B2/C12] 

X=f[-90A4+6B4+12A2-4B2-24A2B2+1] 
Y=i[5B4-2B2+ 16A2B2+ 11 

Table 5. S U ( 2 ) + U ( l ) + U ( l ) .  

Branching 

Q 
K2 

K3 

24[ P2 + Q2 + R 2 ]  
16[2Q4+4R4+(P+ Q+ R ) 4 + ( P +  Q - R ) 4 + 2 ( P + ( Q -  R ) 2 ) 2  
+ 8P2( Q2 - R)’ ]  
8 [ 3 P 2 + 3 Q 2 + 2 R 2 + 2 P R + 2 Q R I 2 +  8[3P2+ 3Q2-2R2 -2PR -2QRI2 
+ 64R4 

Set Q = 2 4  
~ 2 =  1 - p2- 9 2  

X = i [ 2 P 4 - 8 P 3 + 4 P 2 Q 2  -4PQ3+4PQ+ 11 
Y &[ - 8P3 Q + 2P2 Q2 - 8PQ3 + Q“ + 8PQ + 81 
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0.20 

(4.16) does not yield an explicit solution, but the condition (in the notation of table 5)  

(4.18) 

These curves are shown in figure 2. It is clear that the conditions (4.13) are necessary, 
but not sufficient conditions for a curved boundary, and so some portions do not 
correspond to boundaries. 

The reason for this is twofold. Firstly the equations (4.13) take into account only 
the first variation of 5?( U). It is thus quite possible for the solutions to be of saddle-point 
type. This is in fact the case for the solution ( 4 . 1 7 ~ ) .  Secondly the degeneracy of the 
map (3.1) has not been taken into account. Thus two local solutions of (3 .1)  may 
project down onto two intersecting curves in R2. This appears to be the situation for 
the two curves (4.176) and (4.18) which intersect at I2 in figure 2. 

It is not difficult, however, to verify by computer that (4.17) and (4.18) do indeed 
give the boundaries when the problem is restricted to the relevant Fix (H). 

In view of the computational scale of investigating little groups with more than 
fifteen invariants this seems to exhaust the possibilities of this method. Thus the 
existence of a more complicated structure for d o ,  particularly between 43, and q7, 
cannot be ruled out. However the final picture we obtain for dR in figure 3 shares 
several features in common with the results of Frautschi and Kim (1982) for the vector 
plus adjoint breaking of SU(5), and we believe that main features of dR have been 
exposed by our analysis. 

Q4- Q 2 ( l l P 2  - 1)  +2QP(2P2- 1)+ P2(2P2-3)  = 0. 

' I 

0.26 

0.24 

r 

0.22 

Q, 

Figure 3. Boundary of R. 

5. Conclusion 

It has been shown that the most general Higgs potential of the 75 dimensional 
representation of SU(5) x 2, is given by (2.7). The task of minimising the potential 
reduces to finding the boundary of a closed, bounded, connected subset, R, of R2 
defined by the map (3.1). 
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A combination of methods leads to the results shown in figure 3 for this boundary, 
with the reservations made at the end of 3 4. 

To determine the possible symmetry breaking patterns we use the fact, as noted in 
§ 3, that the minimisation of V ( q )  is equivalent to minimising the function A I  + A2X + 
A3Y on SZ. This leads immediately, using figure 4, to the results of table 6. 

0 0.2 0.4 0.6 
x 

Figure 4. Equations of straight lines enclosing a. A, Y=aX+Q; B, Y =AX+#;  C, 
y = - & X + m .  456, D , y=' , ( 1 5 - f i ) X + & ( 5 5 + 7 f i ) .  

Table 6. Symmetry breaking patterns. 

Position 
Range of parameters in figure 2 Sub-algebra Embedding 

Qo U( 1 )  + U( 1 )  + U( 1 )  
+U(1) 

Maximal torus 

C =&( - 15+m) 
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There are several interesting points to raise: 
(i) The existence of an  S U ( 3 ) + S U ( 2 ) + U ( l )  minimum has been noted before 

(Abud et a1 1984a, Hubsch er a1 1984). Our  results confirm this finding and  show that 
for an  open set of the parameters this is an absolute minimum. Thus from the point 
of view of model building the 75 appears to be a viable alternative to the usual adjoint. 

(ii) The existence of the U( 1 )  + U (  1 )  + U (  1 )  + U( 1 )  absolute minimum is interesting 
because it arises in an  algebraic rather than a group theoretic way. Indeed an  approach 
based on calculating the lattice of figure 1 would probably not have found this minimum. 

This case is also an  example of the crucial distinction between a little group and  
a little algebra (the Lie algebra of a little group). It is clear that U( 1)  +U( 1 )  + U (  1 )  + 
U(1) is not a maximal little algebra. The little group of cp,, G,,, is however maximal. 
This can be proven by noting that cpo is invariant under the 2, symmetry generated by 
the permutation 

T = ( l  5 )  
2 4 1 5 3 '  

It is not difficult to show that the only vector invariant under both U( 1 )  x U( 1 )  x U( 1 )  x 
U( 1 )  and this Z ,  symmetry is (up  to a multiplicative constant) cpo. Thus since any G,, 
invariant vector must be invariant under both these groups it follows that Gw0 has only 
one invariant and  so is maximal. 

(iii) The S U ( 2 ) + S U ( 2 ) + U ( l )  absolute minima (curve 7 in figure 2) correspond 
to a non-maximal symmetry breaking pattern and so violate Michel's conjecture (Michel 
1979). This is similar to the example discovered by Abud et a1 (1984b), which was 
not, however, shown to be an  absolute minimum. Once again care must be taken to 
distinguish between algebras and groups. It is clear from figure 1 that the algebra 
S U ( 2 ) + S U ( 2 ) + U ( l )  is not maximal. To show that these minima also have non- 
maximal little groups we note, using ( 4 . 2 1 ~ )  and table 4, that the vectors which map 
to curve 7 in figure 2 have the generic form 

(5 .1)  cp = B(:4,- :: -;;+ ;:+;: -44:) + c:;+ c;; B # 0, c f 0. 

Computing the matrix J :  = cpz:cp$cpfi = cp::A;f: yields 

Since J :  is constructed from cp it commutes with any representation matrix D: of 
G,. Thus G, is conjugate to a group of block diagonal form 

where GI, G2 are 2 x 2  unitary matrices and 2 is a unimodular complex number. 
Requiring that cp be invariant under G, implies that det GI = det G,. 

By inspection these matrices (after a suitable conjugation) also leave cpl invariant 
and it follows that G, is not a maximal little group. 
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If G, is a subgroup of U(5) x Z,, the full linear symmetry group of the potential, 
then Z is arbitrary, whereas if G, is to be a subgroup of SU(5) then Z = (det GI)-*. 
In both cases the above argument holds and G, is a non-maximal little group. 
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Appendix 1 

Littlewood (1944a, b)  in a highly original approach to the invariant theory of the 
classical groups made extensive use of Schur functions ( S  functions) and the operation 
of plethysm which he had earlier introduced as a new type of multiplication (Littlewood 
1950a p 206, 1950b p 289). 

Each S function { p } ,  labelled by apartition ( p )  = ( p , ,  p 2 .  . . p p )  with p1 2 p2 5 .  . .a 
p p  > 0, p s N, corresponds to an irreducible covariant tensor representation of the 
unitary group U(N) .  This correspondence arises in the following manner. If D(g )  is 
the representation of the element g of U( N ) ,  then the character of g in this representa- 
tion is simply Tr D ( g ) .  Since this expression is invariant under transformations 
g + UgU-', where U is a unitary matrix, g may be diagonalised. Thus Tr D ( g )  depends 
only on the eigenvalues of g. It follows that the character is a polynomial function of 
N variables with certain symmetry properties. It is this function which is the S function, 
{ p } ,  the symmetry properties being described by the partition ( p ) .  Since a representa- 
tion is completely specified by its character there is a one to one correspondence 
between S functions and representations of U( N ) .  As a consequence of this definition 
the partition ( p )  also specifies the symmetry of the indices of the tensor representation. 

To each irreducible representation { p }  there corresponds a complex conjugate or 
contragredient representation. This is an irreducible contraviariant tensor representa- 
tion whose character {@} is the complex conjugate of { p } .  The partition ( p )  again 
specifies the symmetry of the tensor indices. The characters of mixed irreducible tensor 
representations may be conveniently denoted by { F; p }  (King 1970), where the parti- 
tions p and v specify the symmetry properties of the covariant and contravariant 
tensor indices and the semicolon indicates tracelessness. With this notation the charac- 
ter of the representation 75 of U(5) realised by the fields 4:; is given by {i2; 12}. 

Quite generally the number of algebraically independent invariants of degree n in 
the components of cp is given by the number of times the identity representation appears 
in the plethysm {vG}O{n} where {n} is a one part partition and cp realises the 
representation { vG}. This plethysm is nothing other than the nth-fold symmetrised 
power of { vG}. Thus in the case of the 75 of U(5) it is necessary to consider {i2; 12}0{ n} 
with n = 2-4 to find the number of invariants appearing in the most general Higgs 
potential. 

It might be thought that since the group under consideration is SU(5) rather than 
U(5), mixed tensors may be dispensed with altogether. In principle this is correct and 
using &ab& to lower contravariant indices it is easy to see (King 1970) that the character 
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{I2; 12} of SU(5) is equivalent to {221}. Unfortunately current tabulations of plethysms 
do not extend to the plethysm {221}@{4}. 

To circumvent this difficulty it seems worthwhile spelling out the rules for dealing 
with S functions and their plethysms, extending the usual techniques to cover the case 
of mixed tensor representations. 

Firstly there are three different products of S functions: 
( i )  Outer products 

( A l . l )  

This product is associated with the tensor of Kronecker product of representations 
of U( N )  and the corresponding multiplication of their characters. Under this operation 
S functions form a commutative, associative algebra. The product may be evaluated 
using the Littlewood-Richardson rule (Littlewood 1950a p 94, Hammermesh 1962 
p 250). Various tabulations of this product exist (Itzykson and Nauenberg 1966, 
Wybourne 1970). 

(ii) Inner products 

(A1.2) 

This operation owes its existence to the duality between the unitary and symmetric 
groups. fiecessarily ( p ) ,  ( v )  and ( p )  are partitions of the same number n and the 
product is nothing other than the corresponding Kronecker product for irreducible 
representations of S,, the symmetric group on n elements. Various techniques exist 
for evaluating such products (Robinson 1961 p 64) and tables of inner products have 
been published (Itzykson and Nauenberg 1966, Wybourne 1970). 

(iii) Plethysms 

(A1.3) 

This operation may be thought of as that of forming the nth-fold symmetrised 
power of { p }  if ( v )  is a partition of n. Under this operation S functions do not form 
an algebra since it is not distributive over addition on the left. The symbol 0 should 
not be confused with that for tensor product. It is retained out of deference to the 
work of Littlewood. 

(Tables of plethysms may be found in Butler and Wybourne (1971).) Plethysms 
obey the following rules 

( A l . 4 ~ )  

(Al.4b) 

( A l . 4 ~ )  

{cL)@({vI*  { P I )  = ({/JI@{vI) * ( { I * I @ { P ) )  

{ P u ) @ ( { V I *  { P I )  = ( { c L I @ { V l )  f ({pI@{ P I )  
({PI@{ V I ) @ {  P )  = { P I @ ( {  V I @ {  P I )  

(A1.4d) 

where (7’) is the partition conjugate to ( T), and ( T) I- t means that ( T) is a partition of 
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t. The coefficients g,, are totally symmetric under all permutations of U, T and p, 
whilst g,.r.p. = gVTp. The following special cases are of interest here 

( A 1 . 5 ~ )  

( A l . 6 ~ )  

(A1.6d) 

where ( m )  is a partition of one part. 

through the use of the further rules 
Extending these rules to include mixed tensor representations is straightforward 

( A l . 7 ~ )  

(A1.7b) 

( A l . 7 ~ )  

(A1.8) 

It should be noted that (A1.7d) corrects a crucial misprint in an earlier paper (King 
1975). It follows from (A1.7d) that 

{i?;  i 2 } = { i 2 }  . { i 2 } - { i } . { i } .  (A1.9) 

Combining this with the other rules yields the following example of the plethysm 
of mixed S functions 

{i2;  1 2 } 0 { 2 } = { i 2 .  i 2 - i .  1 } 0 2  

= ( i2 .  i 2 ) @ 2 - i 2 .  i 2 .  i .  i + ( i .  1 ) @ i 2  

= i 2 @ 2 .  i 2 @ 2 + i 2 @ i 2 .  i 2 @ i 2 - i 2 .  I .  i 2 .  1 

= (Z2+i4) (2?+ 14)  +TI2 e 21'- (TI+ i3) (21 + 13)  +? . i 2  + i2 . 2. 

+ i 0 2 .  i o i 2 + i o i 2 .  1 0 2  

( A l .  l o a )  
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Using ( A 1 . 7 ~ )  yields after the cancellation of a large number of terms 

{i2; iz}o{2}={22;  27+{Z2; i4}+{i4; 22}+{i4; i4} 

+{‘ti’; 212}+{z~;  21}+{7i; 13}+{i3; 21) 

+{ i3;  i3}+{Z; 2}+{i2; i2}+{ iz;  iz}+{ i ;  i}+{o}. (Al.lOb) 

It is not difficult to see that in fact the rules (Al.l)-(A1.8) may be used to calculate 
any plethysm of mixed S functions. 

From the point of view of invariant theory (Al.lOb) leads to the trivial conclusion 
that the representation {i’; l’} of U ( N )  contains a single second degree invariant, 
independent of N. This result is unaltered in the case of SU(N) ,  and in the case of 
SU(5) is simply Q as given in (2.3) and (2.4). 

In determining the number of invariants it is only necessary to find the number of 
times the identity representation, {0}, occurs in the plethysm. The amount of work 
involved is considerably reduced by noting that a product { p }  { v} contains {0} once 
and only once if and only if { p }  = { v}. Making use of this for N sufficiently large 
yields for both U( N )  and SU( N )  

{i2; i 2 } o { 2 } =  1{0}+. . . (Al.11 a )  

{i’; i2}o{3}=2{0}+.  . .  
{i2; i2}o{4}=6{o}+ . . .  . 

(Al.11 b)  

(Al.11 c )  

This confirms that (2.2) is indeed the most general U( N )  or SU( N )  invariant potential. 
For small N these results are not necessarily true. This is because of the existence of 
modification rules (King 1971) giving rise to various equivalence relations between 
representations of U ( N )  labelled by {P; p } .  If the number of parts of the partitions 
( p )  and ( v )  are given by respectively p and q then { F; p }  is standard if p + q G N. If 
p + q > N then { F; p }  is either zero or *{ 7.; CT} for some standard character { 7.; a}. For 
example {i’; 1‘) is standard for N 2 4, but zero for N = 3 and -{I; 1 )  for N = 2. 

Rather than applying modification rules to the final result such as (Al.lOb) for a 
plethysm, it is much simpler to note that for U( N )  or SU( N )  { p }  = 0 (we use 0 to 
make the crucial distinction between zero and the S function (0)) if the number of 
parts of the partition ( p )  exceeds N, and to use this result at an intermediate stage of 
the calculation. In the case under consideration, provided that (7’; 12} is standard, 
and correspondingly N 3 4, (Al.lOa) implies that 

{i2;  1 ’ } 0 2 =  i{o}+. . . for N 3 4. (Al.12) 

However 

{i2; i2}o{3} = j2 32+22i2 . 2212+ i6 . i 6 + m .  321 +221’ 2 2 1 2 + ~ 4  . 214 
+ ~ 3 . 2 3 + ‘ 5 ~ 3 . 3 1 ~ - ~ . 3 3 2 - 2 2 1  . 2 2 1 - 2 1 3 . 2 1 3 - i 5 . 1 5 - 3 1 2 . 3 1 2  

-2’1 . 2’1 -2i3 . 2 1 3 + z 2  - 212+zi2 e 2 1 ’ - ~ i  - 21 +. . . . 
- 

(Al.13) 

Applying the modification rules then yields 

{i2;  i 2 } o { 3 } =  i{o}+. . . N = 4 , 5  (A1.14a) 

=2{0}+.  . . N 2 6 .  (A1.14b) 



178 C J Cummins and R C King 

Similarly 
{i2; i2}0{4}  = 6{0}+. . . N 2 8  

5{0}+. . . N = 6 , 7  

(A1.15~1) 

(A1.15b) 

3{0}+. . . N = 5  ( A l . 1 5 ~ )  

2{0}+. . . N = 4. (A1.15d) 

The particular case of these results for N = 5 imply that for SU(5) the potential 
V ( q )  can be written in terms of one quadratic, two cubic and three quartic invariants. 
Correspondingly there must exist identities of the number and type given in (2.5). 
Their derivation is discussed in appendix 2. The existence of these identities, together 
with the elimination of the cubic term by means of a discrete symmetry, then proves 
that (2.7) is the most general form of the required SU(5) x 2, invariant potential. 

Appendix 2 

Having established in appendix 1 the existence of relationships of the type and number 
of (2.5) it is necessary to derive their form explicitly. The origin of these identities 
can be traced to the vanishing of certain expressions due to an antisymmetrisation 
over more than five indices which take only the values 1 to 5. 

Thus, using [. . .] to denote antisymmetrisation, the expansion of 

(A2.1) 6" 6 6  cd ef - 
[ g  h ( P c d ( P e f l - 0  

yields, after some algebraic manipulation, the useful result: 

S pg S :: 1 Q - 4 S !i B :: 1 + 4A$ - 8 DF84,l = 0. (A2.2) 

Note that this equation only holds if the indices range from 1 to 5 since it is 
necessary to use SE = 5. From (A2.2) can be derived all but one ofthe required identities 
(2.5). Firstly contraction with (P$ gives 

(A2.3) 

c = 4C'. (A2.4) 

Contracting with AZh, yields 

Q 2 - 8 B ~ B ~ + 2 A $ A : ~ - 8 D $ A ~ ~ = - 0  
that is 

K1-8 K3 + 2Kz + 8K4= 0. 

Finally contracting with gives 

(A2.5) 

(A2.6) 

- Q' + 8 K3 - 4K4 + 8 KS - 8 K, = 0. (A2.7) 

To find the last relation we may expand 
x a  zb cd 

(P[ y o  (P rb ( P c d ]  = 0 
which yields 

(A2.8) 
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and contracting with cp',: then gives 

- K3 + 3 Kq- 2K5 + 4K6= 0. (A2.10) 

The equations (2.5) follow immediately and are in agreement with Abud er a1 (1984b). 
This accounts for all the required identities and from the arguments of appendix 1 
there can exist no others, although this does not exclude the possibility of further 
tensorial identities, provided they do not imply additional relationships between the 
second, third and fourth degree invariants. 

It should be pointed out that (A2.2) is really an identity between covariants 
transforming like {i2; 12}. This technique of using obvious identities such as (A2.1) 
and (A2.8) is quite general and has been used, for example, to calculate well known 
identities satisfied by the Riemann curvature tensor (De Witt 1963) which has the 
symmetry {i2; I*}. 

Appendix 3 

The notation ( L  j) is used in the tables to denote the basis vector e[' 0 e']@ e[k  0 ell of 
V* A V*@ V A V where {e,} i = 1, . . . , 5  span a five-dimensional fundamental rep- 
resentation space V of SU(5). Thus cpr(i :) is a vector in the 75- 
dimensional representation of SU(5), provided ~ ; n "  satisfies cp:; = 0 and cpr = (cpz,)*. 

The generators of SU(5) are represented by linear combinations of the matrices 
(J), where (;): = SAS,". The generators are anti-Hermitian, but for convenience we 
have omitted the factor of i in the symmetric generators. 

The action of (J) on (k 1) is simply 

k l  k l  k i  
(A3.1) 

We also have the condition that T (=X,, Tf(;')) is a generator of G, if and only if 

T . Q = ~ .  (A3.2) 

Thus if Q is given, then (A3.1) and the condition (A3.2) may be used to find the 
little algebra of Q. Alternatively given any sub-algebra X, we may find the most general 
Q invariant under the group H generated by X by imposing the condition (A3.2) for 
each generator of X. 

The lattice of little algebras 2Y for the representation {i2; 1') of SU(5) are displayed 
in figure 1. The precise embeddings of X in SU(5) are indicated by giving in each 
case the representation of H obtained by restricting to this subgroup of SU(5) the 
defining five-dimensional representation {I} of SU(5). This restriction takes the form 

SU(5) 2 H {l}* M p ~ @ H  (A3.3) 

where pH denotes an irreducible representation of H. The notation in figure 1 is 
such that (1) and (1) denote the defining n-dimensional representations of SU(n) and 
Sp( n )  respectively whilst ( 0 )  and (0) signify the trivial one-dimensional representations 
of these groups. This notation coincides with that of Littlewood (1950a) and Wybourne 
(1970). In addition subscripts 1, -4,2, . . . are used to denote corresponding representa- 
tions {l}, {a}, (2) .  . . of U(1) wherever appropriate. It should be pointed out that 
groups H of the form U(1) x U( 1) x . . . x U( 1) have been omitted from the lattice of 

F H  
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figure l ( a ) ,  there being far too many of these to display, all arising from further 
branching of the SU(2) representations. 

Alongside each representation of H shown in figure l ( b )  is given the dimension 
of the corresponding H invariant subspace, Fix (H), of the 75-dimensional space of 
the representation {I2; 12} of SU ( 5 ) .  This dimension is most readily calculated by 
making use of (A1.9) and the theorem (see Wybourne 1970), that the branching of the 
representation { p ;  a}  of SU (5) to H is given by 

(A3.4) 

It follows, using the algebra of plethysms, and the fact that iH - pH contains the trivial 
one-dimensional representation of H once and only once if and only if A H  = pH, that 

dim(Fix H )  = c n t H  - m i ,  
"H &H 

(A3.5) 

where the coefficients mu, occur in the branching (A3.3) and the coefficients n,,, occur 
in the reduction 

(A3.6) 

The branching coefficients may be found directly (using (A3.4)) or more simply 
by using well known general results (King 1975, 1982), or tabulated results (McKay 
and Patera 1981, Slansky 1981). 

Note added in proof: Since completing this work we have discovered the paper by Hubsch et a1 (1985), 
which also discusses this problem, in particular the relations (2.5) were given in this paper using a somewhat 
different method of derivation. 
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